Mid-West Instrument

DIAPHRAGM SEALS

Diaphragm Seals (or Chemical Seals) use a flexible barrier, or diaphragm, to isolate a pressure sensor (gauge, switch, transmitter, or transducer) from adverse effects of the process fluid.

HOW IT WORKS:

A diaphragm seal, when properly mounted to its sensor and filled will accurately transmit process pressure to the instrument. Pressure exerted on the flexible diaphragm is transmitted hydraulically to the instrument through the fill fluid, which fills the void between the diaphragm and the instrument, (including the bourdon tube, in the case of a pressure gauge.)

APPLICATION CONSIDERATIONS:

The following should be considered when choosing a diaphragm seal:

 Process Characteristics: Pressure, temperature, (see tables, this page) chemical compatibility and viscosity.
Seal Mounting: Connection to process (threaded, flanged, clamped, in-line) Connection to instrument (usually NPT).

3. Ambient Characteristics: Temperature, corrosive atmosphere, etc.

SPECIAL DESIGNS: Mid-West is ready to work with you on any high-performance diaphragm seal application, (that might exceed the stated limit below) such as high vacuum, high temperature, high sterility, custom design or high static pressure with a low differential span, or high vacuum with high temperature. **4.** Instrument Considerations: Sufficient fluid displacement is required to drive instrument through its full range (this means, for example, you can't put a large gauge on a small seal); remote instrument placement requires a capillary connecting instrument to seal.

5. Vacuum Considerations: High vacuums (over 25" Hg vac.) or vacuums with high temperatures require special fill selection, preparation, and procedures, as well as careful diaphragm selection.

NOTE: Improper selection may result in system failure and possible damage or injury. *Mid-West* can provide application assistance, but final compatibility is the responsibility of the buyer. Proper selection of seal can reduce or eliminate any additional system error caused by adding a Diaphragm Seal to your instrument.

SEAL TYPES:

Standard Seals (pages 2&3) include Threaded offline, threaded in-line, and flanged off-line types in many materials for a variety of applications:

Maximum Temperature	Diaphragm Material	Lower Housing
650°F	Welded Metal	Metal
450°F	Teflon	Metal
300°F	Viton	Metal
140°F	n/a	Nonmetal

	PSI	Lower Housing		
Maximum	1,500	Metal, w/S.S. Bolting	(at 100°F)	
working	2,500	Metal,w/Std. Bolting	(at 100°F)	
pressure	5,000	Metal, w/Hi-Press. Bolting	(at 100°F)	
	Per flange rating	ASA Flange	(Per Flange Spec)	
	300	Non-Metalic	(at 140°F)	
	Diaphragm	Size 5 Seal	Size 6 Seal	
Min.	Metal	25 PSI	10 PSI	
working	Teflon	20 PSI	8" WC	
pressure	Viton	5" WC	N/A	
Vacuum	Metal	-21" hg	-24" hg	
Limits	Teflon	-23" hg	-26" hg	
	Viton	-29" hg	N/A	

MATERIALS:

Lower housings: 316 S.S. is standard with a large selection to suit a wide variety of applications (see table 1, page 3) Diaphragms: Standard metal diaphragms are convoluted and made of 316 S.S. Many other materials are available for corrosion resistance or extra sensitivity. (see table 6, page 3)

Gaskets: Standard gaskets are Teflon on the process side of diaphragm (Grafoil for hi temp.), and Viton on the fill side. Other materials are available. 1

Silicone, DC 704	+50 to 600° F	44	Hi-temp fill	used with strong
Silicone, DC 710	+30 to 700° F	500	Hi-temp fill	oxidizers,
Neobee M-20	-4 to 320° F	10	food grade	such as chlorine.
Glycerin	+30 to 300° F	1110	for food; not recomm. for capillary	oxygen, etc
Halocarbon	-40 to 400° F	6	inert, for use with oxidizers	
Other fills available: consult factory			(must not contact AI, Mg)	

Credits: Viton, Teflon, Kynar, TM DuPont, Inc.; Carpenter 20 - TM Carpenter Steel Co.; Inconel, Monel - TM Huntington Alloys, Inc.; Hastelloy - TM Cabot Corp.; Halocarbon - TM Halocarbon Corp.

6500 Dobry Dr. · Sterling Heights, MI 48314 USA · Tel: 800-648-5778 Fax: 586-254-6509 Web Site: <u>www.midwestinstrument.com</u> · Email: sales@midwestinstrument.com